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ABSTRACT 

 
This paper presented progress development of fundamental study to understand 

rubber leaf spectral behavior based on different rubber clones. The different 

rubber clones will have specific shapes of the rubber leaf. Each clone also 

known has specialty to grow in specific soil, topography, disease resistance and 

environment conditions. This study indicate that different rubber leaves physical 

characteristics influence its spectral properties. Twenty samples reflectance 

value from each of four different rubber clones that covered the bandwidth of 

400nm to 1000nm were collected. This data then can be transformed into 

valuable information to develop a spectral library that keeps previous, new and 

future rubber clone spectral signature information. The accuracy of the 

processing is much depending on the feature extraction techniques of 

hyperspectral data used. The result shows that near infra-red bandwidth and 

above had potential value to segregate rubber clones. 
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INTRODUCTION 
 
A spectral reflectance property is based on the measurement of reflected or emitted radiation from 
different bodies. Objects having different surface features reflect or absorb the sun's radiation in 
different ways. Spectral reflectance, measured by the hyperspectral imaging equipment, is the amount of 
reflected light from a surface. Hyperspectral imaging is the process by which images are taken and 
numerical values (spectral radiance) assigned to each pixel, utilizing a range of wavelengths across the 
electromagnetic spectrum, including visible and infrared regions. Through the use of specialized 
software and statistical analysis, these pixels are sorted and characterized to distinguish between groups 
of pixels, or in the case of precision agriculture, plant characteristics and environmental conditions. 
 
Earlier remote sensing technology, in particular multispectral imaging, collects data at a few widely- 
spaced wavelengths. The data from each wavelength band is assembled into a three-dimensional 
hyperspectral ‘data cube’ for processing and analysis. Each layer of the cube represents data at a specific 
wavelength. The concept of hyperspectral imaging originated at NASA’s Jet Propulsion Laboratory in 
California with the development of the Airborne visible infrared imaging spectrometer (AVIRIS), able to 
cover the wavelength region from 400 to 2500 nm using more than 200 spectral channels, at nominal 
spectral resolution of 10 nm (Green, 1998). 
 
The spectral characteristics of vegetation vary with wavelength. A compound in leaves called chlorophyll 
strongly absorbs radiation in the red and blue wavelengths but reflect a green wavelength. The internal 
structure of healthy leaves acts as a diffuse reflector of near-infrared wavelengths. Measuring and 
monitoring the infrared reflectance is one way that scientists determine how healthy particular 
vegetation may be. In reflecting-light spectroscopy the fundamental property that researchers want to 
obtain is spectral reflectance: the ratio of reflected energy to incident energy as a function of wavelength. 
Reflectance varies with wavelength for most materials because the energy at certain wavelengths is 
scattered or absorbed to different degrees. These reflectance variations are evident when we compare 
spectral reflectance curves (plots of reflectance versus wavelength) for different materials, as in the 
illustration in Figure 1. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Plots of reflectance versus wavelength 

 
Pronounced downward deflections of the spectral curves mark the wavelength ranges for which the 
material selectively absorbs the incident energy. These features are commonly called absorption bands 
(not to be confused with the separate image bands in a multispectral or hyperspectral image). The 
overall shape of a spectral curve and the position and strength of absorption bands in many cases can be 
used to identify and discriminate different materials. For example, vegetation has higher reflectance in 
the near infrared range and lower reflectance of red light than soils. Representative spectral reflectance 
curves for several common Earth surface materials over the visible light to reflected infrared spectral 
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range. The spectral bands used in several multispectral satellite remote sensors are shown at the top for 
comparison. 
 
Reflectance is a unit less quantity that ranges in value from 0 to 1.0, or it can be expressed as a 
percentage, as in Figure 2. When spectral measurements of a test material are made in the field or 
laboratory, values of incident energy are also required to calculate the materialist reflectance. These 
values are either measured directly or derived from measurements of light reflected (under the same 
illumination conditions as the test material) from a standard reference material with known spectral 
reflectance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Reflectance value as a percentage 

 
Figure 3 shows the study result of age based classification of Arecanut crops: a case study of Channagiri, 
Karnataka, India. It is observed from the analysis that crops of ages below 3, 3–7, 8–15 and above 15 
years were showing distinct spectral behavior. It may be concluded that, not only age- based arecanut 
crop classification is possible, but also it is possible to develop age-based spectral library for plantation 
crops like arecanut (Bhojaraja et. al, 2015). Prasad and Gnanappazham (2014) study on discrimination of 
mangrove species of rhizophoraceae using laboratory spectral signatures. The objective was to 
determine potential wavelength locations in hyperspectral bands for the discrimination among eight 
mangrove species of the Rhizophoraceae family using their laboratory spectral reflectance data. Results 
have shown that red edge region is found to be the most consistent wavelength location to discriminate 
species. University of Wisconsin Environmental Spectroscopy Laboratory had published results of the 
spectral characterization of multiple corn varieties. The data were collected from 288 individuals 
belonging to 18 different corn varieties and examined to determine if varieties could be identified using 
spectra, and to determine how traits varied among varieties. 
 
Leaf-level spectral data was collected in the summer of 2014 from corn plants located at the West 
Madison Agricultural Station in Madison, Wisconsin. 5 Measurements were taken from one leaf per plant. 
Collections occurred over the course of one day in the summer of 2014, using an ASD FieldSpec 3 
spectrometer with leaf-clip contact probe. It can be viewed online through 
https://ecosis.org/#result/c0e238ea-5b23-452c-bc40- f0cfe2c6f032. Shwetank et. al, (2012) published 
the result on development of digital spectral library and supervised classification of rice crop varieties 
using hyperspectral image processing. Figure 4 shown the Spectral reflectance curves of various rice 
varieties in VNIR-SWIR bands. After pre-processing, the classification of rice crop at pixel scale across 
155 calibrated spectral bands has shown promising result with 89.33% overall classification accuracy.  
 
Meanwhile Pu (2008) study on an exploratory analysis of in situ hyperspectral data for broadleaf species 
recognition. The total of 394 reflectance spectra (between 350 and 2500 mm) from foliage, branches or 
canopy of 11 important urban forest broadleaf species were measured in the City of Tampa, Florida, U.S. 
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with a spectrometer. The 11 species include American Elm (Ulmus americana), Bluejack Oak (Q. incana), 
Crape Myrtle (Lagerstroemia indica), Laurel Oak (Q. laurifolia), Live Oak (Q. virginiana), Southern 
Magnolia (Magnolia grandiflora), Persimmon (Diospyros virginiana), Red Maple (Acer rubrum), Sand 
Live Oak (Q. geminata), American Sycamore (Platanus occidentalis), and Turkey Oak (Q. laevis). The 
preliminary results of identifying the 11 species with the in situ hyperspectral data imply that current 
remote-sensing techniques are still difficult but possible to identify similar species to such 11 broadleaf 
species with an acceptable accuracy. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 3. Spectral library for arecanut crops of different age groups 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Spectral reflectance curves of various rice verities in VNIR-SWIR bands 

 
The objective of this study is to collect spectral properties for rubber clones. This data then can be 
transformed into valuable information to develop a spectral library that keeps previous, new and future 
rubber clone spectral signature information. Later it could be used by researchers as a technical 
guideline and reference in any related rubber leaf, seed, bark and root spectral research or product 
development. It also broadens research opportunities in geospatial application and encourages more 
new findings from this field. The implementation of a spectral library is crucial and varies on 
applications. 
 

2. MATERIALS AND METHODS 
2.1. Study area 
 
The selected study area was at Tapak Semaian RISDA Kesang Pajak (Nursery), Melaka, Malaysia (Figure 
5). This nursery is owned by Rubber Industry Smallholders Development Authority (RISDA) and supplies 
most commercial rubber seedlings to smallholders. They also supply oil palm seedlings and others. MRB 
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and RISDA always have strong collaboration and work closely as partners. The selection of seedling 
clones is based on the availability of commercial that have high demand. This study was conducted partly 
for Malaysian Rubber Board Scientific and Economic Advisory Council (SEAC) project where the 
objective is to develop a rubber clone spectral library. 
 

 
Figure 5. Tapak Semaian RISDA Kesang Pajak (Nursery) 

 
2.2. Hyperspectral Imager and Spectrometer 
 
There were two types of equipment were used in this study. The first equipment was Hyperspectral 
Imager (Figure 6). The OCI™-F (OCI is a phonetic spelling of "All Seeing Eye") camera is a miniaturized 
push-broom hyperspectral camera covering the full VNIR (400-1000 nm) wavelength range, with 
SuperSpeed USB 3.0 interface. It features ultra-compactness (15 cm x 5 cm x 9 cm) and light weight 
(~550 g) with super-fast data transfer rates (up to 50 fps). As an innovative “true push-broom” imager: 
one can simply use a hand to move the imager or sample to finish the scan. Not depending on a constant 
scanning speed has enabled OCI-F versatility on vast platforms such as UAVs with perfect hyperspectral 
imaging stitching. Compactness, fast imaging, simple operation, and intuitive software make the OCI-F  
very straightforward for applications such as precision agriculture, remote sensing, forensics, and 
airborne applications. The second equipment was spectrometer (Figure 7). The USB2000+UV-VIS is a 
miniature spectrometer pre-configured for general UV-VIS measurements. Covering a wide wavelength 
range, from 200 to 850 nm, this high-performance spectrometer fits into the palm of human hand giving 
the measurements new flexibility. Using the modular approach, it can be customized measurement with 
wide array of sampling accessories and light sources. 
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Figure 6. Hyperspectral Imager 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Spectrometer 
 

2.3. Rubber seedling 
  
30 samples from each 4 rubber clones were selected for this study (Figure 7). Two clones were from 
Group 1 namely RRIM 2002 and PB350. The remaining two were from Group 2 namely RRIM 2025 and 
3001. All these clones are commercial types that have high demand on the market. The seedlings must 
meet on certain criteria to make sure this study gets viable results. The selected seedlings need to be in 
the two leaf stage or 2 whorls and healthy. The leaves are required to be in good condition and clean. 
 

Figure 8. Rubber Seedling Clones 
 

2.1. Data collection, pre-processing and analysis 

The data collection process was completed in an indoor setting, in order to control light resources and 
avoid sunlight. Even though it can be done in an outdoor environment, the decision was made to make 
sure this method can be repeated elsewhere. The selected leaves were cut and put on black background 
before the measurement started. Figure 8 shows the Hyperspectral data collection process begins with 
setup the equipment. Then, all leaves were scanned using Hyperspectral. After that, the raw data were 
transferred to the computer storage. BaySpec’s SpecGrabber were used for camera control and data 
acquisition. The raw hyperspectral data then were processed into readable data using CubeCreator 
software. Meanwhile, for the spectrometer, the raw data are in .txt format and can be converted to excel 
file for further analysis. The upper part of the leaf is measured because of mesophyll cells are 
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concentrated here. Mesophyll contain chloroplasts for photosynthetic reactions. Each clone reacts 
uniquely based on the unique structure of the leaf. It was repeated to all samples. The data were then 
analyzed using ENVI software to perform spectral library properties. 

 
Figure 9. Data collection using hyperspectral imager 

 
 

Figure 10. Data collection using spectrometer 
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2.2. Leaf lamina anatomical characteristics 
The lamina characteristics of each rubber clone were analyses using microscope. The focus area to be 
look into detail was lamina because of the target area during collecting data using spectrometer and 
hyperspectral was there. 
 

 
Figure 11. Lamina section 

 
 

3. RESULTS AND DISCUSSIONS 

The results show (Figure 12 and Figure 13) there are potentials using hyperspectral and a spectrometer 
to distinguish rubber clones. Each clone gave unique spectral library information. Both hyperspectral and 
spectrometer analyses give consistent result as the infra-red bandwidths and above give distinctive 
values among rubber clones. Figure 14 indicate that each clone had specific characteristics of anatomy. 
Further study will clarify in detail on this particular subject. It’s the best reason so far why each clone 
gives different spectral properties result. 
 

Figure 12. Hyperspectral result
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Figure 13. Spectrometer result 
 

Figure 14. Lamina anatomical section 
 

4. CONCLUSIONS 

Hyperspectral and spectrometer information of rubber leaf in nursery stage was successfully collected 
for 4 clones. Rubber leaf hyperspectral/spectrometer properties for different clones were compared and 
showed promising results. The unique characteristics of individual rubber clones by segregation from 
others based on rubber leaf hyperspectral/spectrometer information still open for further analysis and 
findings. 
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